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ON AN APPROACH TO THE INVESTIGATION OF THE SIGNORINI PROBLEM 
USING THE IDEA OF DUALITY* 

V.Ia. THRESHCHENKO 

Reciprocal variational problems forthe boundary functionals of linear elasticity 
theory, defined on convex closed sets of functions, are formulated in an example of 
the Signorini problem. Certain unilateral boundary value problemsoflinearelastic- 
ity theory result in variational problems for such functionals.The reciprocity re- 

lationship is proved, and error estimates are presented of the approximatesolutions 

of unilateral boundary value problems which can be used, for instance, in solving 
contact problems of linear elasticity theory. 

1. Variational inequalities obtained because of minimizing the functional of a problem 
in closed convex sets correspond to boundary value problems with unilateral constraintswhich 

are described in terms of the desired solution belonging to these sets in a certain Hilbert 

space /l-44/. The notation in /5-l/ is hereafter retained. 

Let CC E,be a bounded domain occupied by an anisotropic elastic medium with a suffic- 

iently smooth boundary S = S, U S,. The following unilateral problem /l/ 

25 W(U,.V--IIO)dG33~K(U--1IO)dGf 
,: (1.1) 

is understood to be the (generalized) Signorini problem. 

Here K = K(x), x~ G is the volume force vector, f = f(5) is a given surface stressvector 

on S,, VC W,'(G) is a closed convex set /l/, which is here made specific in the following man- 

ner (which corresponds to the Signorini problem): 

V = {v E W,l (G) 1 d”) Is, > 0) 

where v(z)is the unit vector of the internal normal to S (we shall later omit the superscript 

v on the vector u). 

The problem for the variational inequality (1.1) is equivalent /l/ to the problem of 

minimizing the functional 
J(v)= 2 i, M'(u)dG - y (u) 

y’(+2$ KvdG ( 2 1 foci< 

SI 

on V. Under certain conditions mentioned below that are imposed on \Y (v)/l/thisproblemis 
solvable and the minimizing function satisfies the vector equilibrium equations Au, = K in 

the domain G, the so-called questionable boundary conditions on S, /l/ (intheabsenceof fric- 

tion on the surface),u, @) Is, = 0, 1(V) (u,) ISI > 0 or @ Is,> 0, t(v) (a,,) Is, = 0 , and the condition 

W (uO)js. = f (4 on S, . 
We later use the method /6,7/ that results in a unilateral variational problem for 

certain boundary functionals. 

Let a vector u* (r), ZE G satisfying the conditions 

Au* =KinG, u*Is,=O, W(U*) Is,=f 
exist. Then /7/ 

(1.2) 

2 s W (U*, ~1) dG = s Ku’dG i- 1 fw ds -t 1 t(‘) (U*) wds, VW E wz’ (G) (1.3) 

(i G s2 St 

To obtain this relationship it is sufficient to multiply both sides of the equality 
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A~* = Kby WE W,l(G) to integrate over G and to apply the Betti formula /a/. Taking 1~ = V- 
noE W,l(G)in (1.3) and subtracting the identity (1.3) from (l.l), we obtain 

2 s w (zig - IL*, v-u.,)dG>-5 t(v)(~*)(~-~~)~, VvEV 
G SI 

Let us set,u,-u* =mo~W21(G)here (since u*IsI =O, thencp,,lsl= n,(s,>O, i.e. VOE~? 
then we arrive at the inequality 

2 1 W (cpo, u - Q,) dG > - s t(“) (u*) (v - a,) ds, VUEV (1.41 
ci SI 

The interpretation of this variational inequality (similarly to /2/ or /3/) results in 
the following boundary value problem for the vector 'pO with unilateral constraints in s,: 

=‘%=OinG, cpols,>O, w (90) -t P) (u*) JSI > 0 q%l It’“’ (cpo) + t(v) (u*)]s, = 0, t(V) ((PO) Is* = 0 (1.5) 

For the functions cp satisfying the equation AT = 0 inG, @)(m)Is,= 0 by virtue of the 
Betti formula /8/, the following equality holds 

2 1 w (cp, u) dG = 5 t@) (q) w ds Vlc E Wz’ (G) (1.6) 
c; SI 

Taking this into account, for W = V- U o and uOIal = 'pOIal~ V we obtain from (1.4) a uni- 
lateral variational problem for the boundary functionals 

1 t(~)((PO)(~--(PO)ds>-S t@)(a*)(v-(~~)ds~ VvEV (1.7) 
St h 

Following /l/, we can show that the problem for the variational inequality (1.7) is equi- 
valent to the problem of minimizing the functional 

F(c++f(~)(r+Qgds + \t(v)(~*)yd~, (pEV 
L S* 

in the set V, where ttV)(u*) is a known element. The inequality (1.7) here corresponds to the 
condition F’(cp,) (V - cp,)> 0, VVE V. Assuming that the Korn inequality /l/ is satisfied for 
the problem (l-5), which means that the following condition holds 

SrotcpdG=O 
G 

we investigate the solvability of the problem of minimizing the functionalF(cp) on 1'. 
The symmetry of the boundary bilinear form s u&) (cp)d s and the positivity of the correspond- 

ing quadratic form ~@')((p)ds (integration over S,) follows from (1.6) if the vector-function 
cp~ V is subject to the condition 

(1.8) 

Then the functions Cpls~ belongtothe subspace WY (S,) C WZ* (S,) constructed in /6/ with the 
scalar product 

Iu., (P]~/~s,= 5 I@)& 
St 

k@” (81) is the Sobolev-Slobodetskii space). 2-e set VS, (the set of traces of the vector- 
function cp E V on Sl)is evidently closed in K"'(S,)/6/. Theoperator T enerated by the con- 
tinuous bilinear form <w,t@')(cp)) 9 as the reciprocity ratio on Wr" (S,)X c* (Sl)is, by the 
Riesz theorem, the isometry W,*“‘(S,) on K"*(S,) defined by the relationship /6/ 

I~JV '~l~/;,s,= (w, Tv),,s,= (w, t'"'(m)>, VzP,cpE W:"Z(sr) (1.9) 

The operator T-'is the mapping of W;"'(S,) on Vthat satisfies the Lipschitz condition 
(see /l/, Theorem 2.5). Therefore, the solution moE Vs, C K’/‘(S,) that minimizes the problem 
for the functional F(q) exists for any given vector ~@)(u*)E w”’ (S,)satisfying the conditions 

S W (u*) ds = 0, S w(u*) x rds= 0 
St Sl 

where ris the radius-vector of the point SE S,,and this solution is unique /2,3/. 
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Remark. It follows from (1.9) that the scalar product(,&,s,of elements from W,*"'(S,)x 
wl'iz(sl) in &(sl) is identified with the reciprocity relation c,) in w:'/'(S,) x W;"s (8,). 

The following equality is needed in the sequel /5,6/: 

(cp* W(Y)> = (Y, Tq&,s,= (2(S) (cp), 7,-W) (rp)),*s,, VT E Iv:'4 (&) (1.10) 

and it follows from (1.9) and the fact that the operator T-l is also an isometry WF'l'(S,) in 
I@" (S,) , and therefore, the equality holds /6/ 

jl TY //J,**& = / T-lw (cp)lt,I,‘s*, vrp E w:“’ (W 

Let us discuss the question of the existence and uniqueness of the solution of the 
Signorini problem from the aspect of the approach elucidated for its study, which uses the 
introduction of an auxiliary mixed boundary value problem (1.2) with zero boundary condition 
for the vector U* in the zone of possible contact. As is known /l/, the solution of the gen- 
eralized Signorini pxoblem exists to the accuracy of a rigid displacement p suchthat Y(P)= 0 
and %+ pf fJ under the conditions 

Y(p)+PdC+zS &ids<0 VpEli':-n,qi' 
i: S‘ 

where R the space of rigid displacements, is a kernel of quadratic form 

:! w (v)rlC 
c 
i: 

and the equality sign holds if and only if P- ~R*~(~)ER‘~PER+-_PER is a s&set of bi- 

lateral vectors from R’. 

The approach elucidated above also permits the proof of the existence of a solution of 
the problem (1.1): the solution u"of the problem (1.2) exists and is unique, the solution 'co 
of the unilateral problem (1.7) also exists uniquely; then there exists a solution +,= u*-.. &, 
of the problem (1.1) and any other solution I%' of this problem is %I= %+ P, where P is a 
rigid displacement such that Y(p)= O,u,i- PE V. 

In the case of the contact problem fox a system of linearly deformable bodies, a suffic- 
iently complete analysis of the solvability conditions has been carried out earlier /9/ for 
the corresponding unilateral variational problem on the basis of the Lions-Stampacci theorem. 

2. In making the transition to reciprocity formulations of variational problems with 
unilateral constraints, different approaches can be utilized that reduce the problem con- 
straints, in particular, the Lagrange multiplier method /3,4,10,11/, the method of conjugate 
functions /2-4,12,13/. The latter is used below. 

Let us introduce the function m+$(('~) defined as follows in the space Wr"(S,) 

{see /3/ for the properties of the function 9((p)). Then the problem of finding inf 8'(Y) in 
<pE v reduces to the problem of finding 

(2.1) 

(here the relationship (1.9) is used). 
Let us define the function Q* conjugate to $ with respect to the reciprocity relation 

(cp, - t(')(Y)) on Wz*"' (S,) x W;"'(S,) as follows: 

(in some sources /3,4,12/, the function 9* is called the Young-Fenchel- Moreautransform Of 
the function $, see /3,4/) for the properties of $* 

The following relationship holds /4,14/: 

ql (y) -j- ** (- ttVf (y)) - (y, - t(V) (y)) > 0, vy E RTs (S*), t@)(y) E wz”’ fh) (2.2) 

The conjugate to the functional 

f(cp)=&+%T~)& cpEW:I"(Sl) 

is the functional /5/ 
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f* (W(d) = + (t(v) (cp)7 VW wo,s*= f* (- t(Y) (cp)), tw ($3) E w,“’ (S,) 

and the following relationships hold /14/: 

f W + f* (t(v) (cp)) -- (w t(v) W > 0 
f ho) + f* (~~0) - (‘PO> Twl) = 0 
VT E w:“> (S,), t(v) (cp) E W;“l(S,) 

(2.3) 

(see the relationship (2.3) in /5/, also). 
We shall henceforth confine ourselves to the scheme in /5/: we prove the reciprocity re- 

lationship and we investigate the possibility of utilizing the estimates obtained in /5/ for 
the approximate solutions of the problems (1.1) and (2.1). 

Theorem 1. The functionals 

p (cp) = f (cp) + II, (cp), ‘p E w:“x (&) 
@ (-t(V) (cp)) = - [f* (-t(“) (cp)) + q* (- t(v) (cp))], t(V) (cp) E w,“i (S1) 

form a reciprocal pair, i.e., the following relationship is satisfied 

F(cpo) = inf F (cp) = sup 
09(rppp@d 

@ (- w (cp)) = Q (- SV) (cpo)), 
QEWy(S,) 

‘Poe v 

Following /5/, and taking account of (1.10) and (2.2), we obtain 

F (cp) - @ (- tcV) (cp)) = + (Cp, t(‘) (cP)> + II, (Cp) t (2.4) 

+ (cp, t(“) (cp)) + ** C--P) (cp)) = 

II, (cp) + ** (- t(V) (cp)) + ((P7 P) (cp)> > 0 
vrp E wy (S,), t(v) (cp) E w?(‘* (Sl) 

Let VP0 be an element from V(cpoIs,> O)on which infF(cp) and sup @ (-@) (9)) are achieved. 
Then taking account of (l-9), (2.3), and the definition of the functions $((cp),$* (-t")(cp)), we 
obtain 

F (cpo) - @ (- t@) 0~)) = f ((PO) + f* 6”~) + 9 (cpo) + 
** (- w (VP)) = (cpo, Tqh) + (cpc!~ w (u*)> +- 

sup 
OEW:I”G3,) 

[(Q, -t(V) (cpo)-t(v)(u*))]= 

(qh TqJ,) + <qh w (u*)> - (cpO> t(“) &Jo)) - (cpo, w (u*), = 0 

Hence, and from (2.4) the proof of the theorem follows. 
Therefore, it is also proved that the mapping cp +tcV)(rp) sets up a connection between the 

solutions of the initial and reciprocal problems. 
Let T,,E V,, be an approximate solution of the problem of the minimum of the functional 

F(m), where V,, is a finite dimensional approximation of Vconstructed by some method /3,10/. 

Theorem 2. Let (P,,E V, be an approximation for the element 'pi V that realizes the 
minimum of F(q) in the set V such that m n+Pooas n*win the metric W,l(G) (this means in 
the metrics W;‘:(SJ, w,-“’ @I) also), then the error estimates hold /5/ 

II uo - a, 111,~ = II ‘PO - ‘P,, I/I.G < A h) 
II uo - u, Ih,,s, = II ‘PO - 'P" Ill/+ < CIA (cp,). CI > 0 
11 t(v) (uo) - t(“) (II,) Il+,s, = 11 w (cpc) - tcv) (cp,,) II-v>.s, < czA (cp,): ca > 0 

A OTJ,) = {+ [F h) - 0 (-- w (~,))l]“’ 

Here c> 0 is the constant from the inequalities 

which holds for functions 'p E W%%(G) satisfying condition (1.8). 
In its main features the proof of the theorem duplicates the proof of the corresponding 

theorem from /5/. 
The element% minimizes the functional 

F(m)=! W(cp)dG +s @(“!(zz*)ds, cpEV 
Li S, 
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(here (1.6) is 
the difference 

utilized), which hence satisfies the variational inequality (1.7). Letus form 
of the functionals 

p ('c,) - F (w0) 

The inequality 

2 s It’(cpo, vn - cpo)dG = 5 tcv’(cpo)(cp, - cr,rJ ds > s P) (u*)(cpo - y+Jds, V-(p, e v, 
I; s, 

follows from (1.7) and (1.6). Using it, we obtain 

F(cp,) ---F(R) > 1 J~((P,,) dG -F; [Y(R) dG - 
(; 

2s bv(woT c~,--'~a)dG =!, Iv((p,)dG - j, pv(cpo)dG- 
,; 

2 s IV (cpo. cp,) dG t- 2 j, tV ((~0) dG = 1 IV (cp, - ~0) dG 
G I c: 

Hence, by virtue of (2.5), the inequality 

F(cp,)-~((cPo)~C'IIcp,-~cpoll21,(;, c'=Liac 

follows. 

Then by using the inequality F(cp,)> Q(- t(")(cp,)) resulting from the reciprocity relation 

of Theorem 1, we obtain the first estimate of the theorem. From the inequalitiesofthetheorem 

of traces on S for functions from W',*(G) , the second and third estimates of the theorem fol- 

low /5/. 

Therefore, if a vector U*(x) is constructed that satisfies the identity (1.3) (such a 

vector can be the solution of the mixed problem of elasticity theory (1.2) constructed by the 
generalized Trefftz method, say /7/), and approximate solutions qnf? V,, are constructed for 

the variational problem (1.7), then the approximate solutions of the unilateral Signorini 

problem (1.1) are determined from the rule u, = u* I- vn. 

Analogously to /5/, the problem of minimizing F(cp) on V can also be formulated as a 

problem of finding the projection of the element t@')(u*). 

It follows from (1.10) that the metric in elements from Wz-"9(s,) can also be introduced 

as follows (see /5/): 
1 tcv)(cp)I_l,.,s, = {(L(Y) (cp), T-WY) (cp))o,sJ"~ 

Then the functional F(q)) can be written in the form (see (1.10) 

F (rp) = + ) t(v) (cp) I”-,,*, & + If(Y) (u*), t(Y) (cp)L/,,S, = -+ I t@) (cp) + w (u*) IL s1 - -yj- i ( t(v) (u*) p,,,s, 

If the set V* C W,-“z(S,) conjugate to V /3/ is introduced, then the problem of finding 

infp((r) in V is a problem of finding the projection of the element t@)(u*)'E W,-"z (s,) in the 

set V* /5/, and 

l(y,i;i,ftp 1 t(V) (cp) J- t(v) (a*) /_I,*,&= 1 t(v) ((pcl) t tcV) (u*) I-w, 
* 

3. Let us present certain reasoning about the practical utilization of error estimates 

obtained in Theorem 2 for the approximate solution un of the Singorini problem(u,- u,= 'pO- qn). 

If T,,E I', is an approximate solution of the problem of minimizing the functional 

F (cp) = + s qP) (q’) n’s + s rp (IL*) ds 

5, SI 

on V, then according to what has been proved the approximate solution of the reciprocal 

problem for the functional @(--t@)(v)) is -2(Y)(%) where 

ZE.~, is a vector-operator of the boundary stresses /6/. 
The difficulties in the practical realization of the reciprocity principle utilizedabove 

are /3/ the construction of expressions for the function 9* conjugate to 1'. In order to 

write down the expression for the function @'explicitly in the problem under investigation, 

additional constraints must be imposed on 'PE I'# namely, if cpI,,,s,i_l, then 

+* (- 0) (9)) *- I - 0 (VP) .-P) (u*) I_,,& 

At the same time utilization of the error estimates obtained above for a known approxi- 

mate solution 91 does not require explicit representatation of the functional @ (NV) (T")) 

since the following estimate holds for the difference in the functionals F (R) - 0 (MY) (%J). 
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F (cp,) - aI (- 6”) (T,)) = + ‘qJn7 P) (cp”)) + Q (vn) + 

1 
7 <‘p,, t(V) (I&)> + q* (- P) (cp,)) = ((Pn9 t@) (cp,) + P) (u*), + 

q, I- ‘Vn, t(“) (cp,) + t(“) (u*))l< (‘p,, 0 (q$J + t@) (u*)) + 
n 

(‘p,, P) (cp,) + P) (u*), = 2.1 (cp,) 

I ($J = s T,, It(“) (cp,) + 6’) @*)I ds 
St 

We here used the relationship 
SUP I- ('p,, tcV) (cp 

%FV, 
) ’ P) (u*))] = - 11 T id ‘r+,, P) (cp,) + t”’ (u*)) Q Ccp n, t(V) (q&J -1. 6’) (IL*)) 

%EV, 

since I(~,,) 20 by virtue of (1.5). Also by virtue of (1.5), the following condition 

lim 1 (cp,) =I (rpo) = 0 
n-m 

is satisfied. Therefore, the right side of the error estimates obtained (c-l?I(p))V: is conven- 
ient for calculations (see /5/ also). 

The efficiency of the approach proposed for the numerical solution of contact problems 
of elasticity theory is firstly in the reduction of the dimensionality of the problem being 
solved because of the reduction of a three-dimensional problem to the solution of equations 
defined only on the domain boundary (in the zone of possible contact), secondly, in the ex- 
plicit relationship between the solutions of the initial and reciprocal problems, which facil- 
itates utilization of error estimates of the approximate solution. At the same time, the 
utilization of such a widespread method as the finite-element method for the construction of 
the solution is difficult because the coordinate functions in the problem (1.5) should satisfy 
the elasticity theory equation in the ordinary sense , i.e., be twice continuously differenti- 
able. 

The spaces of the traces W, *"'(S,) x W;‘l’(S,) figure in the variational principle constructed 
above (Theorem 1). Utilization of the spaces W;"' (S) x F"'(S) is ordinarily associated with 
difficulties in the practical calculation of their norms since norms with fractional indexare 
singular repeated integrals on the domain boundary, and calculation of the norm in conjugate 
space (negative) is related to the solution of the auxiliary maximization problem. The above- 
mentioned difficulties are not present in the variational principle constructed since the norm 
in the space W,““‘(S,) is defined in conformity with (1.9) and is equivalent /6/ to the norm in 
W,L!T (S,). Evaluation of the norm in the reciprocal space q "'(S,) is not required since if cpli 
is the approximate solution found for the initial problem, then -t(')(qpn) is the solution of the 
reciprocal problem, and therefore, there is no need to solve the reciprocal problem related to 
the calculation of the norm in W;';'(S). 
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